The First International Symposium on Optimization and Systems Biology (OSB'07) Beijing, China, August 8–10, 2007 Copyright © 2007 ORSC & APORC, pp. 443–450

The Incidence Chromatic Number of 2-connected 1-trees

Hua Duan^{1,2,*}

Qingtian Zeng² Congying Han² Wenjun Lian²

¹Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, P.R.China ²College of Information Science and Engineering,

Shandong University of Science and Technology, Qingdao 266510, P.R.China

Abstract In this paper, the structural properties of 1-trees are discussed in details firstly. Based on the properties of 1-trees, the incidence chromatic number of 2-connected 1-trees can be determined.

Keywords 1-tree; Incidence set; Incidence chromatic number

1 Introduction

The incidence coloring of graph is introduced by Brualdi and Massey^[1] for solving Erdős' strong edge coloring's Conjecture in 1993.

Let G = (V, E) be a graph of order *n* and of size *m*. Let $I = \{(v, e) : v \in V, e \in E, v \text{ is incident with } e\}$ be the set of incidences of *G*. We say that two incidences (v, e) and (w, f) are neighborly iff one of the following conditions satisfies:

(1) v = w; (2) e = f; (3) the edge $\{v, w\}$ equals e or f.

We define an incidence coloring of *G* to be a coloring of its incidences in which neighborly incidences are assigned different colors. The incidence chromatic number of *G* denoted by $\chi_i(G)$ is the smallest number of colors in an incidence coloring.

The incidence chromatic number and the strong chromatic number of graphs have close relations. A strong edge coloring^[2] of *G* is a coloring of the edges of *G* in which the edges with the same colors form an induced matching. The strong chromatic number sq(G) equals the smallest number of colors in a strong edge coloring. Let *H* be the bipartite multigraph of order n + m with bipartition *V*, *E* in which v_i is adjacent to e_j iff v_i is incident with e_j in *G*. An incidence coloring of *G* corresponds to a partition of the edges of *H* into induced matchings. Thus $\chi_i(G) = sq(H)$.

Therefore, the determination of the incidence chromatic number of a graph is a fascinating question. The incidence coloring number of complete graphs, complete bipartite graphs and trees are determined in [1]. Putting forward the following Conjecture:

^{*}Email: hduan@sdust.edu.cn

Conjecture: Every graph can be incident colored with $\Delta + 2$ colors, namely $\chi_i(G) \leq \Delta + 2$ where Δ is the maximum degree of *G*.

In [3], it is proved that the above conjecture is not true using Paley graphs. [3] presented that the upper bound for the incidence chromatic number of a graph is $\Delta + O(log\Delta)$. [5] determined the incidence coloring number of paths, cycles, fans, wheels, adding-edge wheels and complete multipartite graphs. [6] determined the incidence coloring number of $P_n \times P_m$ and generalized complete graphs. [7] determined the incidence chromatic number of Halin graphs and outerplane graphs($\Delta \ge 4$). [8] determined the incidence chromatic number of cubic graphs.

Let *G* be a plane graph. If $\exists v \in V(G)$ such that G - v is a forest, *G* is called 1-tree, and *v* is called a root vertex. A vertex with degree *k* in a graph *G* is called a *k*-vertex. For a incidence coloring *f* of *G*, $v \in V(G)$, $N(v) = \{u|uv \in E(G), u \in V(G)\}$. We call $f[v] = \{f(v, vu), u \in N(v)\}$ is the near incidence set of *v*, and $f(v] = \{f(u, uv), u \in N(v)\}$ is the far incidence set of *v*. Let f(vu) denote $\{f(v, vu), f(u, uv)\}$, and f[v] denote $\{f(vu)|u \in N_G(v)\}$.

In addition, other terms and notations not stated can be found in [9].

2 Structural properties of 1-trees

Lemma 2.1^[4] If *F* is a forest, then $|V_1(F)| \ge \Delta(F)$, where $V_1(F)$ denotes all 1-vertices of *F*.

Lemma 2.2^[4] If *T* is tree with $\Delta(T) \ge 2$, then $|S(T)| \ge 1$ and |S(T)| = 1 iff $T \cong K_{1,p-1}$, where $(S(T) = \bigcup_{0 \le i \le 1} V_i(T - V_1(T)))$.

Lemma 2.3^[4] If G is a 2-connected 1-tree, then $\delta(G) \leq 2$.

In this paper, we discuss 2-connected 1-trees G. Hence, $\delta(G) = 2$ and G is cycle when $\Delta(G) = 2$. The incidence chromatic number of cycles has been determined. Therefore, we discuss $\Delta(G) \ge 3$ in the following.

In the following discussions, we denote a plane graph S_p with p vertices u, v, x_1 , \dots, x_{p-2} and 2p - 4 edges $ux_1, ux_2, \dots, ux_{p-2}, vx_1, \dots, vx_{p-2}$. $\overline{S_p}$ has the same vertex set with S_p , and $E(\overline{S_p}) = E(S_p) \cup \{uv\}$.

For $p \ge 6$, $S_p^1, S_p^2, \ldots, S_p^k (k = p - 5)$, are a family of plane graphs with the same vertex set with S_p . $E(S_p^1) = E(S_p) \setminus \{ux_1, vx_2\} \cup \{x_1x_2\}, E(S_p^2) = E(S_p^1) \setminus \{vx_3\} \cup \{x_1x_3\}, E(S_p^3) = E(S_p^2) \setminus \{vx_4\} \cup \{x_1x_4\}, \ldots$ We denote the family of graphs by \aleph . The maximum degree of every graph of \aleph is p - 3.

Lemma 2.4^[4] If *G* is a 2-connected 1-tree with $\Delta(G) \ge 3$, then at least one of the following cases is true:

1) There are two adjacent 2-vertices *u* and *v*;

2) There is a 3-face *uvw* such that d(u) = 2 and d(v) = 3;

3) There is a 4-cycle *uxvyu* whose interior contains at most one edge *xy* and d(u) = d(v) = 2, $d(x) \le \Delta(G) - 1$;

4) $G \cong S_p$ or $G \cong \overline{S_p}$.

Lemma 2.5 Let *G* be a 2-connected 1-tree and *t* be the root vertex of *G*, then $d_G(t) = \Delta(G)$.

Proof: Let F = G - t. Since *G* is 2-connected 1-tree, $\delta(G) = 2$ and $V_1(F) \subseteq N_G(t)$. If *G* is cycle, the conclusion is true. When *G* is not cycle, suppose $d_G(t) < \Delta(G)$, then there exists $v \in V(F)$, $d_G(v) = \Delta(G)$. If $vt \notin E(G)$, then $d_G(v) = d_F(v)$. By Lemma 2.1, $\Delta(G) = \Delta(F) \le |V_1(F)| \le |d_G(t)| < \Delta(G)$. The contradiction occurs. If $vt \in E(G)$, by Lemma 2.1, $\Delta(G) - 1 \le \Delta(F) \le |V_1(F)| \le |d_G(t)| - 1 < \Delta(G) - 1$. There is also contradiction. Therefore, $d_G(t) = \Delta(G)$.

Lemma 2.6 Let *G* be a 2-connected 1-tree and *t* be the root vertex. For any $x, y \in V(G) \setminus \{t\}, d_G(x) + d_G(y) \le \Delta + 2$.

Proof: Let *G* be a 2-connected 1-tree, F = G - t, and *F* be a tree and $V_1(F) \subseteq N_G(t)$. $\forall x, y \in V(F), d_F(x) - 1 + d_F(y) - 1 \leq |V_1(F)| \leq \Delta(G)$.

1) If $xt, yt \notin E(G)$, then $d_G(x) + d_G(y) \le \Delta + 2$.

2) If one of $xt \in E(G)$ and $yt \in E(G)$ is correct, without loss of generality, we assume $xt \in E(G)$. If x is a leaf of F, $d_G(x) = 2$, $d_F(y) = d_G(y) \le |V_1(F)| \le \Delta(G)$, hence $d_G(x) + d_G(y) \le \Delta + 2$. If x isn't a leaf of F, $(d_G(x) - 1) - 1 + d_G(y) - 1 \le |V_1(F)| \le \Delta(G) - 1$, $d_G(x) + d_G(y) \le \Delta + 2$

3) If $xt, yt \in E(G)$, x and y are leaves of F. The conclusion is true. When x and y are not leaves of F, $(d_G(x) - 1) - 1 + (d_G(y) - 1) - 1 \le |V_1(F)| \le \Delta(G) - 2$, and $d_G(x) + d_G(y) \le \Delta + 2$. When one of x and y is a leaf of F, the proof similar to the case 2).

Therefore, The conclusion is true.

Lemma 2.7 Let *G* be a 2-connected 1-tree and *t* be a root vertex. If $\exists x, y \in V(G) \setminus \{t\}$ such that $d_G(x) + d_G(y) = \Delta + 2$, then $\forall z \in V(G) \setminus \{x, y, t\}, d_G(z) = 2$.

Proof(disproof): Let F = G - t. $\forall z \in V(G) \setminus \{x, y, t\}$. Suppose that $d_G(z) \ge 3$. Since G is 2-connected, F is a tree and $|V_1(F)| \le \Delta(G)$.

Case 1 $zt \in E(G)$, then $|V_1(F)| \le \Delta(G) - 1$. For $\forall x, y \in V(G) \setminus \{t\}, d_F(x) - 1 + d_F(y) - 1 \le |V_1(F)|$.

Subcase 1.1 $xt, yt \notin E(G)$, then $d_G(x) = d_F(x)$ and $d_G(y) = d_F(y)$. Therefore, $d_G(x) - 1 + d_G(y) - 1 \le |V_1(F)|$, that is $d_G(x) + d_G(y) \le \Delta + 1$. There is contradiction with the proposition.

Subcase 1.2 One of $xt \in E(G)$ and $yt \in E(G)$ is true, without loss of generality, we assume $xt \notin E(G)$ and $yt \in E(G)$. Thus, $d_G(x) = d_F(x)$, $d_G(y) = d_F(y) + 1$, and $d_G(x) - 1 + (d_G(y) - 1) - 1 \le |V_1(F)|$. If y is a leaf of F, then $d_G(x) + d_G(y) \le \Delta + 1$. If y isn't a leaf of F, then $|V_1(F)| \le \Delta - 2$, and $d_G(x) + d_G(y) \le \Delta + 1$. There is contradiction with the proposition.

Subcase 1.3 *xt*, *yt* $\in E(G)$, there are three cases as the following:

1) *x* is a leaf and *y* isn't a leaf, then $d_G(y) = d_F(y) + 1 \le |V_1(F)| + 1 \le (\Delta - 2) + 1 \le \Delta - 1$, and $d_G(x) + d_G(y) \le \Delta + 1$.

2) *x* and *y* are all leaves, then $d_G(x) + d_G(y) = 4$.

3) *x* and *y* are all not leaves, then $(d_G(x) - 1) - 1 + (d_G(y) - 1) - 1 \le |V_1(F)| \le \Delta - 2$. That is $d_G(x) + d_G(y) \le \Delta + 1$. There is contradiction with the proposition.

Case 2 $zt \notin E(G)$, then $\forall x, y \in V(G) \setminus \{t\}$, $d_F(x) - 1 + d_F(y) - 1 + d_F(z) - 1 \le |V_1(F)| \le \Delta(G)$. There are also three subcases, and the proof is similar to Case1.

Lemma 2.8 If G is a 2-connected 1- tree and G is not cycle, then the number of the maximum degree vertex of G is at most 2. When there are two maximum degree vertices, other vertices are 2-degree vertices.

Proof: Suppose that there are three maximum degree vertices x, y, z. Let x be the root vertex. By Lemma 2.6, $d_G(y) + d_G(z) \le \Delta + 2$, namely $\Delta \le 2$. Since G is 2-connected, $\delta(G) = 2$. It is contradict with that G isn't cycle. Hence, the number of the maximum degree vertex of G is at most 2.

Let *x* and *y* be two maximum degree vertices of *G*, and *x* be a root vertex. $\forall z \in V(G) \setminus \{x, y\}$, by Lemma 2.6, $d_G(y) + d_G(z) \le \Delta + 2$, $d(z) \le 2$, and $\delta(G) = 2$. Therefore, d(z) = 2. The conclusion is true.

3 Incidence chromatic number of 2-connected 1-trees

Lemma 3.1^[1,5] For any graphs *G* with the maximum degree Δ , $\chi_i(G) \ge \Delta + 1$.

Lemma 3.2^[7] Let the maximum degree of G be Δ and there exist a $(\Delta + 1)$ -incidence coloring. The far incidence of the maximum degree vertex is colored the same color.

For $S_p, \overline{S_p}$ and the graphs of \aleph , there are the following three Lemmas.

Lemma 3.3 For $p \ge 5$, $inc(S_p) = \Delta(S_p) + 2 = p$ and $inc(\overline{S_p}) = \Delta(\overline{S_p}) + 1 = p$. **Proof:** Firstly, we construct a *p*-incidence coloring *f* of S_p , and $f: I(S_p) \to C = \{1, 2, ..., p\}$.

$$f(u, ux_i) = f(v, vx_i) = i, i = 1, 2, \dots, p-2,$$

$$f(x_i, x_i u) = p - 1, f(x_i, x_i v) = p, i = 1, 2, \dots, p-2$$

Hence, $\chi_i(S_p) \leq p$. Now we prove $\chi_i(S_p) \geq p$

If S_p isn't satisfied, there is $\chi_i(S_p) \le p-1 = \Delta(S_p) + 1$. *u* and *v* are the maximum degree vertices. If *f* is a $(\Delta(S_p) + 1)$ -incidence coloring of S_p , then the near incidence of *u* and *v* need $\Delta(S_p)$ colors. The other two colors far incidence coloring of *u* and *v* is needed at least one color same to $f[u) \cup f[v)$. This is contradict with the definition of incidence coloring. Hence, $\chi_i(S_p) \ge p$, and $\chi_i(S_p) = p$.

For $\overline{S_p}$, we may get by the incidence coloring of S_p . If the colors of the far incidence of *u* and *v* color the same color, we get a *p*-incidence coloring of $\overline{S_p}$. Hence $inc(\overline{S_p}) = p$.

Lemma 3.4 For $p \ge 6$, the incidence coloring number of graphs of graph family \aleph is p-2.

Proof: By Lemma 3.1, if only we give a (p-2)-incidence coloring of \aleph . Now we construct an incidence coloring f of S_p^k , $f:I(S_p^k) \to C = \{1, 2, ..., p-2\}$. Let the vertex set be $\{u, v, x_1, ..., x_{p-2}\}$.

 $f(u, ux_i) = i, f(x_i, x_iu) = f(x, xx_1) = 1, i = 2, \dots, p-2.$

The Incidence Chromatic Number of 2-connected 1-trees

$$f(v, vx_i) = f(u, ux_i), f(x_1, x_1v) = f(x_i, x_iv) = 2, \ i = 2 + k, \dots, p - 2, \ 1 \le k \le 5.$$

$$p - 5$$
.

 $f(x_1, x_1x_2) = f(u, ux_{p-2}) = p - 2, f(x_1, x_1x_i) = \dots = f(u, ux_i), i = 3, \dots, 1 + k.$ $f(x_i, x_ix_1) = f(u, ux_{2+k}), i = 2, \dots, 1 + k.$

Hence, the conclusion is true.

Theorem 3.5 If G is a 2-connected 1-tree with the maximum degree $\Delta \ge 3$ and two maximum degree vertices, and $G \ne S_p^1$, then there exists a $(\Delta + 2)$ -incidence coloring of G, such that the far incidence of every vertex has the same color.

Proof: If *G* is S_p or $\overline{S_p}$, the conclusion is true by Lemma 3.3. For other graphs, suppose *u* and *v* are two maximum degree vertices. Other vertices of *G* are 2-vertices by Lemma 2.6. There exists Δuv -paths with different length. We construct a $(\Delta + 2)$ -incidence coloring *f* of *G*, $f : I(G) \rightarrow C = \{1, 2, ..., \Delta + 2\}$.

Let $\sum_{i=1}^{r} k_i = \Delta$, where k_i denotes the number of the *uv*-paths whose length is *i* and $k_1 = 1$. We color every path in increasing order. Let $f(u] = \Delta + 1$ and $f(v] = \Delta + 2$. Thus, the far incidences of *u* and *v* are colored.

1) For i = 2, we color the near incidences of u and v with the same color and the color is $1, 2, ..., k_2$, respectively.

2) For i = 3, let $uu_1^i u_2^i v(i = 1, 2, ..., k_3)$ be k_3 uv-paths, and let $f(u, uu_1^i) = f(u_2^i, u_2^i u_1^i) = k_2 + i$, $f(v, vu_2^i) = f(u_1^i, u_1^i u_2^i) = \Delta - i$, and $i = 1, 2, ..., k_3$.

3) For i = 4, let $uu_1^i u_2^i u_3^i v(i = 1, 2, ..., k_4)$ be k_4 uv-paths, and $f(u, uu_1^i) = f(u_2^i, u_2^i u_1^i) = k_2 + k_3 + i$, $f(v, vu_3^i) = f(u_2^i, u_2^i u_3^i) = \Delta - k_3 - i$, and $f(u_1^i, u_1^i u_2^i) = f(u_3^i, u_3^i u_2^i) = \alpha \in C \setminus \{f(uu_1^i), f(vv_3^i)\}, i = 1, 2, ..., k_4.$

4) For i = r, let $uu_1^i u_2^i \dots u_{r-1}^i v(i = 1, 2, \dots, k_r)$ are $k_r uv$ -paths, and $f(u, uu_1^i)$ = $f(u_2^i, u_2^i u_1^i) = k_2 + \dots + k_{r-1} + i$, $f(v, vu_{r-1}^i) = f(u_{r-2}^i, u_{r-2}^i u_{r-1}^i) = \Delta - (k_3 + \dots + k_{r-1}) - 1$, $i = 1, 2, \dots, k_r$. For any $u_j^i (j = 2, 3, \dots, r-2)$, it's the far incidences with at most 4 limits, so there exists colors and $|f(u_i^i)| = 1$.

Therefore, we prove the conclusion.

Theorem 3.6 For $p \ge 7$, the graphs of graph family \aleph do not have (p-1)-incidence colors, therefore the far incidence of every vertex is colored the same color.

Proof: $\forall S_p^k \in \mathfrak{K}$, *k* is positive integer and $k \le p-5$. Suppose $V(S_p^k) = \{u, v, x_1, \dots, x_{p-2}\}$ and *u* is the root vertex. We need p-2 colors to color the far incidences and the near incidences of *u*. By the definition of incidence coloring and the demand, the far incidences of *v* and x_1 need the other two different colors.

So, the conclusion is true.

Theorem 3.7 If *G* is a 2-connected 1-tree with $\Delta \ge 3$ and only one maximum degree vertex, and $G \notin \aleph$, there exists a $(\Delta + 2)$ -incidence coloring of *G*, such that the far incidence of every vertex is colored with the same color.

Proof: We will proceed by induction on the order *p* of *G*. There is $p \ge 4$ by the proposition $\Delta \ge 3$. When p = 4, it is clear that *G* is fan F_4 , so the result is true. We suppose that the conclusion is correct for graph *G* with order less than $p(p \ge 5)$.

Now, for any graph *G* with order *p*, by Lemma 2.4, we can divide the proof into four cases. Let $C = \{1, 2, ..., \Delta + 2\}$ be the color set.

Case 1 There are two adjacent 2-vertices u and v. Let $N(u) = \{x, v\}$, $N(v) = \{u, y\}$, H = G - u + xv, and $d_G(y) < \Delta$ (by proposition only one maximum degree vertex). The order of H is less than p and $\Delta(H) = \Delta(G) = \Delta$. By induction hypothesis, H has a $(\Delta + 2)$ -incidence coloring $f^* : I(H) \to C$ such that the far incidence of every vertex is colored the same color. Now we extend f^* to a $(\Delta + 2)$ -incidence coloring f of G as follows: $f(xu) = f^*(xv)$, $f(v,vu) = f^*(x,xv)$, $f(u,uv) = f(y,yv) = \alpha \in C \setminus \{f^*[y] \cup f^*(x])\}$. The incidence coloring of other elements is same to f^* .

Case 2 There is a 3-face *uvwu* such that $d_G(u) = 2$ and $d_G(v) = 3$. By Lemma 2.5 and Lemma 2.8, $d_G(w) = \Delta(G)$. Let H = G - u, and $\Delta(H) = \Delta(G) - 1$. If $H \notin \aleph$, by induction hypothesis, H has a $(\Delta + 2)$ -incidence coloring $f^* : I(H) \to C$ such that the far incidence of every vertex is colored with the same color. Now we extend f^* to a $(\Delta + 2)$ -incidence coloring f of G as follows: $f(u, uw) = f^*(v, vw)$, $f(u, uv) = f^*(w, wv)$, $f(w, wu) = f(v, vu) = \alpha \in C \setminus \{f^*[w] \cup f^*[v]\}$. The incidence coloring of other elements the same to f^* .

If $H \in \aleph$, we construct a $(\Delta+2)$ -incidence coloring of G. Let $V(G) = \{w, u, v, x, y, v_1, \ldots, v_{\Delta-2}\}$ and $E(G) = \{wu, wv, wv_1, \ldots, wv_{\Delta-2}\} \cup \{uv, vx, xy\} \cup \{xv_1, \ldots, xv_{k-1}\} \cup \{yv_k, \ldots, y, v_{\Delta-2}\}, 1 \le k \le \Delta - 2, f(w, wu) = f(v, vu) = 1, f(v] = 2, \text{ and } f(w, wv_i) = 2 + i, i = 1, \ldots, \Delta - 2,$

 $f(w] = \Delta + 1, f(x] = \Delta + 2, f(y] = 1,$

 $f(x, xv_i) = f(w, wv_i)i = 1, \dots, k-1, f(y, yv_i) = f(w, wv_i)i = k, \dots, \Delta - 2.$

Clearly, f is an incidence coloring of G which satisfies the demand.

Case 3 There is a 4-cycle *uxvyu* whose interior contains at most one edge *xy*, $d_G(u) = d_G(v) = 2, d_G(x) \le \Delta(G) - 1.$

1) $xy \in E(G)$. Let H = G - u, $\Delta(H) = \Delta(G) - 1$, H has a $(\Delta + 1)$ -incidence coloring $f^* : I(H) \to C' = \{1, 2, ..., \Delta + 1\}$ such that the far incidence of every vertex is color with the same color. Now we extend f^* to a $(\Delta + 2)$ -incidence coloring f of G as follows: $f(u, ux) = f^*(y, yx)$, $f(u, uy) = f^*(x, xy)$, $f(x, xu) = f(y, yu) = \Delta + 2$. The incidence coloring of other elements is same to f^* .

2) $xy \notin E(G)$. Let H = G - u, $\Delta(H) = \Delta(G) - 1$, H has a $(\Delta + 1)$ -incidence coloring $f^* : I(H) \to C' = \{1, 2, ..., \Delta + 1\}$ such that the far incidence of every vertex is colored with the same color. Now we extend f^* to a $(\Delta + 2)$ -incidence coloring f of G as follows: $f(u, uy) = f^*(v, vy)$, $f(u, ux) = f^*(v, vx)$, $f(y, yu) = f(x, xu) = \Delta + 2$. The incidence coloring of other elements is same to f^* .

Case 4 $G \cong S_p$ or $G \cong \overline{S_p}$. By Lemma3.3, the conclusion is true.

Theorem 3.8 Let *G* be a 2-connected 1-tree with $\Delta \ge 3$ and $G \ne S_p$ and $G \notin \aleph$, $\chi_i(G) = \Delta + 1$.

Proof: We will proceed by induction on the order *p* of *G*. There is $p \ge 4$ by the proposition $\Delta \ge 3$. When p = 4, clearly, *G* is fan F_4 , so the result is true. We suppose that the conclusion holds for graph *G* of order less than $p(p \ge 5)$. Now, for

any graph *G* of order *p*, by Lemma 2.3, we may divide the proof into four cases. Let $C = \{1, 2, ..., \Delta + 1\}$ be the color set.

Case 1 There are two adjacent 2-vertices *u* and *v*. Let $N(u) = \{x, v\}$, $N(v) = \{u, y\}$, and H = G - u + xv. The order of *H* is less than *p* and $\Delta(H) = \Delta(G) = \Delta$. By induction hypothesis, *H* has a $(\Delta + 1)$ -incidence coloring $f^* : I(H) \to C$. Now we extend f^* to a $(\Delta + 1)$ -incidence coloring *f* of *G* as follows: $f(xu) = f^*(xv)$, $f(v, vu) = \alpha \in C \setminus \{f^*(vy) \cup f(u, ux)\}$, $f(u, uv) = \beta \in C \setminus \{f(xu) \cup f^*(v, vy) \cup \alpha\}$. The incidence coloring of other elements is same to f^* .

Case 2 There is a 3-face such that $d_G(u) = 2$ and $d_G(v) = 3$. By Lemma 2.4 and Lemma 2.7, *w* is a root vertex and $d_G(w) = \Delta(G)$. Let H = G - u, then $\Delta(H) = \Delta(G) - 1$. If $H \notin \mathbb{X}$, by Theorem 3.6 and 3.7, *H* has a $(\Delta + 1)$ -incidence coloring f^* : $I(H) \to C$ such that the far incidence of every vertex is colored with the same color. Next, we extend f^* to a $(\Delta + 1)$ -incidence coloring *f* of *G* as follows: $f(u, uw) = f^*(v, vw)$, $f(u, uv) = f^*(w, wv)$, $f(v, vu) = \alpha \in C \setminus f^*[v]$, $f(w, wu) = \beta \in C \setminus f^*[w]$. The incidence coloring of other elements is same to f^* .

If $H \in \aleph$, by Lemma 3.4, H has a (Δ)-incidence coloring $f^* : I(H) \to C' = \{1, 2, ..., \Delta\}$. Now we extend f^* to a (Δ +1)-incidence coloring f of G as follows: $f(u, uw) = f^*(v, vw), f(w, wu) = f(v, vu) = \Delta + 1, f(u, uv) = f^*(w, wv)$. The incidence coloring of other elements is same to f^* .

Case 3 There is a 4-cycle *uxvyu* whose interior contains at most one edge *xy*, $d_G(u) = d_G(v) = 2$, $d_G(x) \le \Delta(G) - 1$, then $d_G(y) = \Delta(G)$.

1) $xy \in E(G)$. Let H = G - u, then $\Delta(H) = \Delta(G) - 1$, and $H \notin \mathbb{X}$. By Theorem 3.7, H has a $(\Delta + 1)$ -incidence coloring $f^* : I(H) \to C$ such that the far incidence of every color wi with the same color. Now we extend f^* to a $(\Delta + 1)$ -incidence coloring f of G as follows: $f(u, uy) = f^*(x, xy)$, $f(u, ux) = f^*(y, yx)$, $f(y, yu) = \alpha \in C \setminus \{f^*[y]\}, f(x, xu) = \beta \in C \setminus f^*[x].$

2) $xy \notin E(G)$. Let H = G - u, then $\Delta(H) = \Delta(G) - 1$. By Theorem 3.7, *H* has a $(\Delta + 1)$ -incidence coloring $f^* : I(H) \to C$ such that the far incidence of every vertex is colored with the same color. Now we extend f^* to a $(\Delta + 1)$ -incidence coloring f of G as follows: $f(u, uy) = f^*(v, vy)$, $f(y, yu) = \alpha \in C \setminus f^*[y]$. If $\alpha \notin f^*[x)$, $f(x, xu) = \alpha$, $f(u, ux) = \beta \in C \setminus f^*[x] \setminus f(uy)$. If $\alpha \in f^*[x)$, $f(x, xu) = \beta \in C \setminus \{f^*[x] \cup f^*(y], f(u, uy) \cup \beta\}$. If $\alpha \in f^*(x]$, when $d(x) < \Delta - 1$, $f(x, xu) = \beta \in C \setminus \{f^*[x] \cup f(u, uy) \cup \beta\}$. If $\alpha \in f^*(x] \cup f^*(y] \cup \beta\}$. When $d(x) = \Delta + 1$, by Lemma 2.7 and Lemma 2.8, *G* has one only one 3-vertex and other vertices are 2-vertices. Let $f(x] = \beta \in C \setminus \{f^*[x] \cup f^*(y]\}$, $f(x, xu) = \alpha = f(y, yu)$, if the near incidence of adjacent vertices of *x* is colored β in coloring f^* , since there is at most 4 limitations, we may recolor it.

The incidence coloring of other elements is same to f^* .

Case4 $G \cong \overline{S_p}$. By Lemma 2.4, the conclusion is correct.

Acknowledgement

This work is supported partially by national science foundation of China (10571109 and 60603090).

References

- [1] R. Brualdi and J. J.Q. Massey.Incidence and strong edge coloring of Graph.Discrete Mathematics, 122(1993),51-58.
- [2] R.J.Faudree, R.H.Schelp, A.Gyarfas and Z.Tuza. The strong chromatic index of graphs. Ars Combin, 29B(1990), 205-211.
- [3] B.Guiduli. On incidence coloring and star arboricity of graphs. Discrete Mathematics, 163(1997),275-278.
- [4] W.F.Wang. Edge-Face Chromatic of 1-Tree. Chinese Quarterly Journal of Mathematics, 14(4)(1999)76-83.
- [5] D.L.Chen, X.K.Liu and S.D.Wang. The Incidence Chromatic Number and The Incidence Coloring Conjecture of Graphs. Mathematics Economics, 15(3)(1998),47-51.
- [6] X.G.Chen, D.L.Chen and S.D.Wang. On Incidence Chromatic number of $P_N \times K_M$ and K(n,m).Mathematics Economics, 17(3)(2000), 45-50.
- [7] S.D.Wang, D.L.Chen and S.C. Pang. The incidence coloring number of Halin graphs and outerplanar graphs.Discrete Math.256(2002)397-405.
- [8] W.C.Shiu, P. C.B.Lam and D.L.Chen. On incidence coloring for some cubic graphs.Discrete Math. 252 (2002) 259-266
- [9] J.A.Bondy and Murty. Graph Theory with Application. Macmillan Press.LTD, 1976.