The Incidence Chromatic Number of 2-connected 1-trees

Hua Duan ${ }^{1,2, *} \quad$ Qingtian Zeng ${ }^{2} \quad$ Congying Han ${ }^{2}$ Wenjun Lian ${ }^{2}$
${ }^{1}$ Department of Mathematics, Shanghai Jiaotong University, Shanghai 200240, P.R.China
${ }^{2}$ College of Information Science and Engineering,
Shandong University of Science and Technology, Qingdao 266510, P.R.China

Abstract

In this paper, the structural properties of 1-trees are discussed in details firstly. Based on the properties of 1 -trees, the incidence chromatic number of 2-connected 1-trees can be determined.

Keywords 1 -tree; Incidence set; Incidence chromatic number

1 Introduction

The incidence coloring of graph is introduced by Brualdi and Massey ${ }^{[1]}$ for solving Erdǒs' strong edge coloring's Conjecture in 1993.

Let $G=(V, E)$ be a graph of order n and of size m. Let $I=\{(v, e): v \in V, e \in$ E, v is incident with $e\}$ be the set of incidences of G. We say that two incidences (v, e) and (w, f) are neighborly iff one of the following conditions satisfies:
(1) $v=w$;
(2) $e=f$;
(3) the edge $\{v, w\}$ equals e or f.

We define an incidence coloring of G to be a coloring of its incidences in which neighborly incidences are assigned different colors. The incidence chromatic number of G denoted by $\chi_{i}(G)$ is the smallest number of colors in an incidence coloring.

The incidence chromatic number and the strong chromatic number of graphs have close relations. A strong edge coloring ${ }^{[2]}$ of G is a coloring of the edges of G in which the edges with the same colors form an induced matching. The strong chromatic number $s q(G)$ equals the smallest number of colors in a strong edge coloring. Let H be the bipartite multigraph of order $n+m$ with bipartition V, E in which v_{i} is adjacent to e_{j} iff v_{i} is incident with e_{j} in G. An incidence coloring of G corresponds to a partition of the edges of H into induced matchings. Thus $\chi_{i}(G)=s q(H)$.

Therefore, the determination of the incidence chromatic number of a graph is a fascinating question. The incidence coloring number of complete graphs, complete bipartite graphs and trees are determined in [1]. Putting forward the following Conjecture:

[^0]Conjecture: Every graph can be incident colored with $\Delta+2$ colors, namely $\chi_{i}(G) \leq \Delta+2$ where Δ is the maximum degree of G.

In [3], it is proved that the above conjecture is not true using Paley graphs. [3] presented that the upper bound for the incidence chromatic number of a graph is $\Delta+O(\log \Delta)$. [5] determined the incidence coloring number of paths, cycles, fans, wheels, adding-edge wheels and complete multipartite graphs. [6] determined the incidence coloring number of $P_{n} \times P_{m}$ and generalized complete graphs. [7] determined the incidence chromatic number of Halin graphs and outerplane graphs $(\Delta \geq 4)$. [8] determined the incidence chromatic number of cubic graphs.

Let G be a plane graph. If $\exists v \in V(G)$ such that $G-v$ is a forest, G is called 1 -tree, and v is called a root vertex. A vertex with degree k in a graph G is called a k-vertex. For a incidence coloring f of $G, v \in V(G), N(v)=\{u \mid u v \in E(G), u \in$ $V(G)\}$. We call $f[v)=\{f(v, v u), u \in N(v)\}$ is the near incidence set of v, and $f(v]=$ $\{f(u, u v), u \in N(v)\}$ is the far incidence set of v. Let $f(v u)$ denote $\{f(v, v u), f(u, u v)\}$, and $f[v]$ denote $\left\{f(v u) \mid u \in N_{G}(v)\right\}$.

In addition, other terms and notations not stated can be found in [9].

2 Structural properties of 1-trees

Lemma 2.1 ${ }^{[4]}$ If F is a forest, then $\left|V_{1}(F)\right| \geq \Delta(F)$, where $V_{1}(F)$ denotes all 1-vertices of F.

Lemma 2.2 ${ }^{[4]}$ If T is tree with $\Delta(T) \geq 2$, then $|S(T)| \geq 1$ and $|S(T)|=1$ iff $T \cong K_{1, p-1}$, where $\left(S(T)=\cup_{0 \leq i \leq 1} V_{i}\left(T-V_{1}(T)\right)\right)$.

Lemma 2.3 ${ }^{[4]}$ If G is a 2-connected 1-tree, then $\delta(G) \leq 2$.
In this paper, we discuss 2-connected 1-trees G. Hence, $\delta(G)=2$ and G is cycle when $\Delta(G)=2$. The incidence chromatic number of cycles has been determined. Therefore, we discuss $\Delta(G) \geq 3$ in the following.

In the following discussions, we denote a plane graph S_{p} with p vertices u, v, x_{1}, \ldots, x_{p-2} and $2 p-4$ edges $u x_{1}, u x_{2}, \ldots, u x_{p-2}, v x_{1}, \ldots, v x_{p-2} . \overline{S_{p}}$ has the same vertex set with S_{p}, and $E\left(\overline{S_{p}}\right)=E\left(S_{p}\right) \cup\{u v\}$.

For $p \geq 6, S_{p}^{1}, S_{p}^{2}, \ldots, S_{p}^{k}(k=p-5)$, are a family of plane graphs with the same vertex set with $S_{p} . E\left(S_{p}^{1}\right)=E\left(S_{p}\right) \backslash\left\{u x_{1}, v x_{2}\right\} \cup\left\{x_{1} x_{2}\right\}, E\left(S_{p}^{2}\right)=E\left(S_{p}^{1}\right) \backslash\left\{v x_{3}\right\} \cup$ $\left\{x_{1} x_{3}\right\}, E\left(S_{p}^{3}\right)=E\left(S_{p}^{2}\right) \backslash\left\{v x_{4}\right\} \cup\left\{x_{1} x_{4}\right\}, \ldots$. We denote the family of graphs by The maximum degree of every graph of \aleph is $p-3$.

Lemma 2.4 ${ }^{[4]}$ If G is a 2-connected 1-tree with $\Delta(G) \geq 3$, then at least one of the following cases is true:

1) There are two adjacent 2 -vertices u and v;
2) There is a 3-face $u v w$ such that $d(u)=2$ and $d(v)=3$;
3) There is a 4-cycle uxvyu whose interior contains at most one edge $x y$ and $d(u)=d(v)=2, d(x) \leq \Delta(G)-1$;
4) $G \cong S_{p}$ or $G \cong \overline{S_{p}}$.

Lemma 2.5 Let G be a 2-connected 1-tree and t be the root vertex of G, then $d_{G}(t)=\Delta(G)$.

Proof: Let $F=G-t$. Since G is 2-connected 1-tree, $\delta(G)=2$ and $V_{1}(F) \subseteq$ $N_{G}(t)$. If G is cycle, the conclusion is true. When G is not cycle, suppose $d_{G}(t)<$ $\Delta(G)$, then there exists $v \in V(F), d_{G}(v)=\Delta(G)$. If $v t \notin E(G)$, then $d_{G}(v)=d_{F}(v)$. By Lemma 2.1, $\Delta(G)=\Delta(F) \leq\left|V_{1}(F)\right| \leq\left|d_{G}(t)\right|<\Delta(G)$. The contradiction occurs. If $v t \in E(G)$, by Lemma 2.1, $\Delta(G)-1 \leq \Delta(F) \leq\left|V_{1}(F)\right| \leq\left|d_{G}(t)\right|-1<\Delta(G)-1$. There is also contradiction. Therefore, $d_{G}(t)=\Delta(G)$.

Lemma 2.6 Let G be a 2-connected 1-tree and t be the root vertex. For any $x, y \in V(G) \backslash\{t\}, d_{G}(x)+d_{G}(y) \leq \Delta+2$.

Proof: Let G be a 2-connected 1-tree, $F=G-t$, and F be a tree and $V_{1}(F) \subseteq$ $N_{G}(t) . \forall x, y \in V(F), d_{F}(x)-1+d_{F}(y)-1 \leq\left|V_{1}(F)\right| \leq \Delta(G)$.

1) If $x t, y t \notin E(G)$, then $d_{G}(x)+d_{G}(y) \leq \Delta+2$.
2) If one of $x t \in E(G)$ and $y t \in E(G)$ is correct, without loss of generality, we assume $x t \in E(G)$. If x is a leaf of $F, d_{G}(x)=2, d_{F}(y)=d_{G}(y) \leq\left|V_{1}(F)\right| \leq \Delta(G)$, hence $d_{G}(x)+d_{G}(y) \leq \Delta+2$. If x isn't a leaf of $F,\left(d_{G}(x)-1\right)-1+d_{G}(y)-1 \leq$ $\left|V_{1}(F)\right| \leq \Delta(G)-1, d_{G}(x)+d_{G}(y) \leq \Delta+2$
3) If $x t, y t \in E(G), x$ and y are leaves of F. The conclusion is true. When x and y are not leaves of $F,\left(d_{G}(x)-1\right)-1+\left(d_{G}(y)-1\right)-1 \leq\left|V_{1}(F)\right| \leq \Delta(G)-2$, and $d_{G}(x)+d_{G}(y) \leq \Delta+2$. When one of x and y is a leaf of F, the proof similar to the case 2).

Therefore, The conclusion is true.
Lemma 2.7 Let G be a 2-connected 1-tree and t be a root vertex. If $\exists x, y \in$ $V(G) \backslash\{t\}$ such that $d_{G}(x)+d_{G}(y)=\Delta+2$, then $\forall z \in V(G) \backslash\{x, y, t\}, d_{G}(z)=2$.

Proof(disproof): Let $F=G-t . \forall z \in V(G) \backslash\{x, y, t\}$. Suppose that $d_{G}(z) \geq 3$. Since G is 2-connected, F is a tree and $\left|V_{1}(F)\right| \leq \Delta(G)$.

Case $1 z t \in E(G)$, then $\left|V_{1}(F)\right| \leq \Delta(G)-1$. For $\forall x, y \in V(G) \backslash\{t\}, d_{F}(x)-1+$ $d_{F}(y)-1 \leq\left|V_{1}(F)\right|$.

Subcase $1.1 x t$, $y t \notin E(G)$, then $d_{G}(x)=d_{F}(x)$ and $d_{G}(y)=d_{F}(y)$. Therefore, $d_{G}(x)-1+d_{G}(y)-1 \leq\left|V_{1}(F)\right|$, that is $d_{G}(x)+d_{G}(y) \leq \Delta+1$. There is contradiction with the proposition.

Subcase 1.2 One of $x t \in E(G)$ and $y t \in E(G)$ is true, without loss of generality, we assume $x t \notin E(G)$ and $y t \in E(G)$. Thus, $d_{G}(x)=d_{F}(x), d_{G}(y)=d_{F}(y)+1$, and $d_{G}(x)-1+\left(d_{G}(y)-1\right)-1 \leq\left|V_{1}(F)\right|$. If y is a leaf of F, then $d_{G}(x)+d_{G}(y) \leq \Delta+1$. If y isn't a leaf of F, then $\left|V_{1}(F)\right| \leq \Delta-2$, and $d_{G}(x)+d_{G}(y) \leq \Delta+1$. There is contradiction with the proposition.

Subcase $1.3 \mathrm{xt}, \mathrm{yt} \in E(G)$, there are three cases as the following:

1) x is a leaf and y isn't a leaf, then $d_{G}(y)=d_{F}(y)+1 \leq\left|V_{1}(F)\right|+1 \leq(\Delta-2)+$ $1=\Delta-1$, and $d_{G}(x)+d_{G}(y) \leq \Delta+1$.
2) x and y are all leaves, then $d_{G}(x)+d_{G}(y)=4$.
3) x and y are all not leaves, then $\left(d_{G}(x)-1\right)-1+\left(d_{G}(y)-1\right)-1 \leq\left|V_{1}(F)\right| \leq$ $\Delta-2$. That is $d_{G}(x)+d_{G}(y) \leq \Delta+1$. There is contradiction with the proposition.

Case $2 z t \notin E(G)$, then $\forall x, y \in V(G) \backslash\{t\}, d_{F}(x)-1+d_{F}(y)-1+d_{F}(z)-1 \leq$ $\left|V_{1}(F)\right| \leq \Delta(G)$. There are also three subcases, and the proof is similar to Case1.

Lemma 2.8 If G is a 2-connected 1 - tree and G is not cycle, then the number of the maximum degree vertex of G is at most 2 . When there are two maximum degree vertices, other vertices are 2-degree vertices.

Proof: Suppose that there are three maximum degree vertices x, y, z. Let x be the root vertex. By Lemma 2.6, $d_{G}(y)+d_{G}(z) \leq \Delta+2$, namely $\Delta \leq 2$. Since G is 2 -connected, $\delta(G)=2$. It is contradict with that G isn't cycle. Hence, the number of the maximum degree vertex of G is at most 2 .

Let x and y be two maximum degree vertices of G, and x be a root vertex. $\forall z \in V(G) \backslash\{x, y\}$, by Lemma 2.6, $d_{G}(y)+d_{G}(z) \leq \Delta+2, d(z) \leq 2$, and $\delta(G)=2$. Therefore, $d(z)=2$. The conclusion is true.

3 Incidence chromatic number of 2-connected 1-trees

Lemma 3.1 ${ }^{[1,5]}$ For any graphs G with the maximum degree $\Delta, \chi_{i}(G) \geq \Delta+1$.
Lemma 3.2 ${ }^{[7]}$ Let the maximum degree of G be Δ and there exist a $(\Delta+1)$ incidence coloring. The far incidence of the maximum degree vertex is colored the same color.

For $S_{p}, \overline{S_{p}}$ and the graphs of \aleph, there are the following three Lemmas.
Lemma 3.3 For $p \geq 5, \operatorname{inc}\left(S_{p}\right)=\Delta\left(S_{p}\right)+2=p$ and $\operatorname{inc}\left(\overline{S_{p}}\right)=\Delta\left(\overline{S_{p}}\right)+1=p$.
Proof: Firstly, we construct a p-incidence coloring f of S_{p}, and $f: I\left(S_{p}\right) \rightarrow C=$ $\{1,2, \ldots, p\}$.

$$
\begin{aligned}
& f\left(u, u x_{i}\right)=f\left(v, v x_{i}\right)=i, i=1,2, \ldots, p-2 \\
& f\left(x_{i}, x_{i} u\right)=p-1, f\left(x_{i}, x_{i} v\right)=p, i=1,2, \ldots, p-2
\end{aligned}
$$

Hence, $\chi_{i}\left(S_{p}\right) \leq p$. Now we prove $\chi_{i}\left(S_{p}\right) \geq p$
If S_{p} isn't satisfied, there is $\chi_{i}\left(S_{p}\right) \leq p-1=\Delta\left(S_{p}\right)+1 . u$ and v are the maximum degree vertices. If f is a $\left(\Delta\left(S_{p}\right)+1\right)$-incidence coloring of S_{p}, then the near incidence of u and v need $\Delta\left(S_{p}\right)$ colors. The other two colors far incidence coloring of u and v is needed at least one color same to $f[u) \cup f[v)$. This is contradict with the definition of incidence coloring. Hence, $\chi_{i}\left(S_{p}\right) \geq p$, and $\chi_{i}\left(S_{p}\right)=p$.

For $\overline{S_{p}}$, we may get by the incidence coloring of S_{p}. If the colors of the far incidence of u and v color the same color, we get a p-incidence coloring of $\overline{S_{p}}$. Hence $\operatorname{inc}\left(\overline{S_{p}}\right)=p$.

Lemma 3.4 For $p \geq 6$, the incidence coloring number of graphs of graph family \aleph is $p-2$.

Proof: By Lemma 3.1, if only we give a $(p-2)$-incidence coloring of \aleph. Now we construct an incidence coloring f of $S_{P}^{k}, f: I\left(S_{p}^{k}\right) \rightarrow C=\{1,2, \ldots, p-2\}$. Let the vertex set be $\left\{u, v, x_{1}, \ldots, x_{p-2}\right\}$.

$$
f\left(u, u x_{i}\right)=i, f\left(x_{i}, x_{i} u\right)=f\left(x, x x_{1}\right)=1, i=2, \ldots, p-2 .
$$

$$
f\left(v, v x_{i}\right)=f\left(u, u x_{i}\right), f\left(x_{1}, x_{1} v\right)=f\left(x_{i}, x_{i} v\right)=2, i=2+k, \ldots, p-2,1 \leq k \leq
$$ $p-5$.

$$
\begin{aligned}
& f\left(x_{1}, x_{1} x_{2}\right)=f\left(u, u x_{p-2}\right)=p-2, f\left(x_{1}, x_{1} x_{i}\right)=\cdots=f\left(u, u x_{i}\right), i=3, \ldots, 1+k \\
& f\left(x_{i}, x_{i} x_{1}\right)=f\left(u, u x_{2+k}\right), i=2, \ldots, 1+k
\end{aligned}
$$

Hence, the conclusion is true.
Theorem 3.5 If G is a 2-connected 1-tree with the maximum degree $\Delta \geq 3$ and two maximum degree vertices, and $G \neq S_{p}^{1}$, then there exists a $(\Delta+2)$-incidence coloring of G, such that the far incidence of every vertex has the same color.

Proof: If G is S_{p} or $\overline{S_{p}}$, the conclusion is true by Lemma 3.3. For other graphs, suppose u and v are two maximum degree vertices. Other vertices of G are 2-vertices by Lemma 2.6. There exists $\Delta u v$-paths with different length. We construct a $(\Delta+2)$ incidence coloring f of $G, f: I(G) \rightarrow C=\{1,2, \ldots, \Delta+2\}$.

Let $\sum_{i=1}^{r} k_{i}=\Delta$, where k_{i} denotes the number of the $u v$-paths whose length is i and $k_{1}=1$. We color every path in increasing order. Let $f(u]=\Delta+1$ and $f(v]=\Delta+2$. Thus, the far incidences of u and v are colored.

1) For $i=2$, we color the near incidences of u and v with the same color and the color is $1,2, \ldots, k_{2}$, respectively.
2) For $i=3$, let $u u_{1}^{i} u_{2}^{i} v\left(i=1,2, \ldots, k_{3}\right)$ be $k_{3} u v$-paths, and let $f\left(u, u u_{1}^{i}\right)=$ $f\left(u_{2}^{i}, u_{2}^{i} u_{1}^{i}\right)=k_{2}+i, f\left(v, v u_{2}^{i}\right)=f\left(u_{1}^{i}, u_{1}^{i} u_{2}^{i}\right)=\Delta-i$, and $i=1,2, \ldots, k_{3}$.
3) For $i=4$, let $u u_{1}^{i} u_{2}^{i} u_{3}^{i} v\left(i=1,2, \ldots, k_{4}\right)$ be $k_{4} u v$-paths, and $f\left(u, u u_{1}^{i}\right)=$ $f\left(u_{2}^{i}, u_{2}^{i} u_{1}^{i}\right)=k_{2}+k_{3}+i, f\left(v, v u_{3}^{i}\right)=f\left(u_{2}^{i}, u_{2}^{i} u_{3}^{i}\right)=\Delta-k_{3}-i$, and $f\left(u_{1}^{i}, u_{1}^{i} u_{2}^{i}\right)=$ $f\left(u_{3}^{i}, u_{3}^{i} u_{2}^{i}\right)=\alpha \in C \backslash\left\{f\left(u u_{1}^{i}\right), f\left(v v_{3}^{i}\right)\right\}, i=1,2, \ldots, k_{4}$.
4) For $i=r$, let $u u_{1}^{i} u_{2}^{i} \ldots u_{r-1}^{i} v\left(i=1,2, \ldots, k_{r}\right)$ are $k_{r} u v$-paths, and $f\left(u, u u_{1}^{i}\right)$ $=f\left(u_{2}^{i}, u_{2}^{i} u_{1}^{i}\right)=k_{2}+\cdots+k_{r-1}+i, \quad f\left(v, v u_{r-1}^{i}\right)=f\left(u_{r-2}^{i}, u_{r-2}^{i} u_{r-1}^{i}\right)=\Delta-$ $\left(k_{3}+\cdots k_{r-1}\right)-1, i=1,2, \ldots, k_{r}$. For any $u_{j}^{i}(j=2,3, \ldots, r-2)$, it's the far incidences with at most 4 limits, so there exists colors and $\left|f\left(u_{j}^{i}\right]\right|=1$.

Therefore, we prove the conclusion.
Theorem 3.6 For $p \geq 7$, the graphs of graph family $\boldsymbol{\aleph}$ do not have $(p-1)$ incidence colors, therefore the far incidence of every vertex is colored the same color.

Proof: $\forall S_{p}^{k} \in \aleph, k$ is positive integer and $k \leq p-5$. Suppose $V\left(S_{p}^{k}\right)=\left\{u, v, x_{1}\right.$, $\left.\ldots, x_{p-2}\right\}$ and u is the root vertex. We need $p-2$ colors to color the far incidences and the near incidences of u. By the definition of incidence coloring and the demand, the far incidences of v and x_{1} need the other two different colors.

So, the conclusion is true.
Theorem 3.7 If G is a 2-connected 1-tree with $\Delta \geq 3$ and only one maximum degree vertex, and $G \notin \mathcal{\aleph}$, there exists a $(\Delta+2)$-incidence coloring of G, such that the far incidence of every vertex is colored with the same color.

Proof: We will proceed by induction on the order p of G. There is $p \geq 4$ by the proposition $\Delta \geq 3$. When $p=4$, it is clear that G is fan F_{4}, so the result is true. We suppose that the conclusion is correct for graph G with order less than $p(p \geq 5)$.

Now, for any graph G with order p, by Lemma 2.4 , we can divide the proof into four cases. Let $C=\{1,2, \ldots, \Delta+2\}$ be the color set.

Case 1 There are two adjacent 2-vertices u and v. Let $N(u)=\{x, v\}, N(v)=$ $\{u, y\}, H=G-u+x v$, and $d_{G}(y)<\Delta$ (by proposition only one maximum degree vertex). The order of H is less than p and $\Delta(H)=\Delta(G)=\Delta$. By induction hypothesis, H has a $(\Delta+2)$-incidence coloring $f^{*}: I(H) \rightarrow C$ such that the far incidence of every vertex is colored the same color. Now we extend f^{*} to a $(\Delta+2)$-incidence coloring f of G as follows: $f(x u)=f^{*}(x v), f(v, v u)=f^{*}(x, x v)$, $\left.f(u, u v)=f(y, y v)=\alpha \in C \backslash\left\{f^{*}[y] \cup f^{*}(x]\right)\right\}$. The incidence coloring of other elements is same to f^{*}.

Case 2 There is a 3-face $u v w u$ such that $d_{G}(u)=2$ and $d_{G}(v)=3$. By Lemma 2.5 and Lemma 2.8, $d_{G}(w)=\Delta(G)$. Let $H=G-u$, and $\Delta(H)=\Delta(G)-1$. If $H \notin \mathfrak{\aleph}$, by induction hypothesis, H has a $(\Delta+2)$-incidence coloring $f^{*}: I(H) \rightarrow C$ such that the far incidence of every vertex is colored with the same color. Now we extend f^{*} to a $(\Delta+2)$-incidence coloring f of G as follows: $f(u, u w)=f^{*}(v, v w), f(u, u v)=$ $f^{*}(w, w v), f(w, w u)=f(v, v u)=\alpha \in C \backslash\left\{f^{*}[w) \cup f^{*}[v)\right\}$. The incidence coloring of other elements the same to f^{*}.

If $H \in \aleph$, we construct a $(\Delta+2)$-incidence coloring of G. Let $V(G)=\{w, u, v, x$, $\left.y, v_{1}, \ldots, v_{\Delta-2}\right\}$ and $E(G)=\left\{w u, w v, w v_{1}, \ldots, w v_{\Delta-2}\right\} \cup\{u v, v x, x y\} \cup\left\{x v_{1}, \ldots, x v_{k-1}\right\} \cup$ $\left\{y v_{k}, \ldots, y v_{\Delta-2}\right\}, 1 \leq k \leq \Delta-2, f(w, w u)=f(v, v u)=1, f(v]=2$, and $f\left(w, w v_{i}\right)=$ $2+i, i=1, \ldots, \Delta-2$,
$f(w]=\Delta+1, f(x]=\Delta+2, f(y]=1$,
$f\left(x, x v_{i}\right)=f\left(w, w v_{i}\right) i=1, \ldots, k-1, f\left(y, y v_{i}\right)=f\left(w, w v_{i}\right) i=k, \ldots, \Delta-2$.
Clearly, f is an incidence coloring of G which satisfies the demand.
Case 3 There is a 4-cycle uxvyu whose interior contains at most one edge xy, $d_{G}(u)=d_{G}(v)=2, d_{G}(x) \leq \Delta(G)-1$.

1) $x y \in E(G)$. Let $H=G-u, \Delta(H)=\Delta(G)-1, H$ has a $(\Delta+1)$-incidence coloring $f^{*}: I(H) \rightarrow C^{\prime}=\{1,2, \ldots, \Delta+1\}$ such that the far incidence of every vertex is color with the same color. Now we extend f^{*} to a $(\Delta+2)$-incidence coloring f of G as follows: $f(u, u x)=f^{*}(y, y x), f(u, u y)=f^{*}(x, x y), f(x, x u)=f(y, y u)=\Delta+2$. The incidence coloring of other elements is same to f^{*}.
2) $x y \notin E(G)$. Let $H=G-u, \Delta(H)=\Delta(G)-1, H$ has a $(\Delta+1)$-incidence coloring $f^{*}: I(H) \rightarrow C^{\prime}=\{1,2, \ldots, \Delta+1\}$ such that the far incidence of every vertex is colored with the same color. Now we extend f^{*} to a $(\Delta+2)$-incidence coloring f of G as follows: $f(u, u y)=f^{*}(v, v y), f(u, u x)=f^{*}(v, v x), f(y, y u)=f(x, x u)=\Delta+2$. The incidence coloring of other elements is same to f^{*}.

Case $4 G \cong S_{p}$ or $G \cong \overline{S_{p}}$. By Lemma3.3, the conclusion is true.
Theorem 3.8 Let G be a 2-connected 1-tree with $\Delta \geq 3$ and $G \neq S_{p}$ and $G \notin \mathfrak{\aleph}$, $\chi_{i}(G)=\Delta+1$.

Proof: We will proceed by induction on the order p of G. There is $p \geq 4$ by the proposition $\Delta \geq 3$. When $p=4$, clearly, G is fan F_{4}, so the result is true. We suppose that the conclusion holds for graph G of order less than $p(p \geq 5)$. Now, for
any graph G of order p, by Lemma 2.3, we may divide the proof into four cases. Let $C=\{1,2, \ldots, \Delta+1\}$ be the color set.

Case 1 There are two adjacent 2-vertices u and v. Let $N(u)=\{x, v\}, N(v)=$ $\{u, y\}$, and $H=G-u+x v$. The order of H is less than p and $\Delta(H)=\Delta(G)=\Delta$. By induction hypothesis, H has a $(\Delta+1)$-incidence coloring $f^{*}: I(H) \rightarrow C$. Now we extend f^{*} to a $(\Delta+1)$-incidence coloring f of G as follows: $f(x u)=f^{*}(x v)$, $f(v, v u)=\alpha \in C \backslash\left\{f^{*}(v y) \cup f(u, u x)\right\}, f(u, u v)=\beta \in C \backslash\left\{f(x u) \cup f^{*}(v, v y) \cup \alpha\right\}$. The incidence coloring of other elements is same to f^{*}.

Case 2 There is a 3-face such that $d_{G}(u)=2$ and $d_{G}(v)=3$. By Lemma 2.4 and Lemma 2.7, w is a root vertex and $d_{G}(w)=\Delta(G)$. Let $H=G-u$, then $\Delta(H)=$ $\Delta(G)-1$. If $H \notin \aleph$, by Theorem 3.6 and $3.7, H$ has a $(\Delta+1)$-incidence coloring f^{*} : $I(H) \rightarrow C$ such that the far incidence of every vertex is colored with the same color. Next, we extend f^{*} to a $(\Delta+1)$-incidence coloring f of G as follows: $f(u, u w)=$ $f^{*}(v, v w), f(u, u v)=f^{*}(w, w v), f(v, v u)=\alpha \in C \backslash f^{*}[v], f(w, w u)=\beta \in C \backslash f^{*}[w]$. The incidence coloring of other elements is same to f^{*}.

If $H \in \aleph$, by Lemma 3.4, H has a (Δ)-incidence coloring $f^{*}: I(H) \rightarrow C^{\prime}=$ $\{1,2, \ldots, \Delta\}$. Now we extend f^{*} to a $(\Delta+1)$-incidence coloring f of G as follows: $f(u, u w)=f^{*}(v, v w), f(w, w u)=f(v, v u)=\Delta+1,, f(u, u v)=f^{*}(w, w v)$. The incidence coloring of other elements is same to f^{*}.

Case 3 There is a 4-cycle uxvyu whose interior contains at most one edge $x y$, $d_{G}(u)=d_{G}(v)=2, d_{G}(x) \leq \Delta(G)-1$, then $d_{G}(y)=\Delta(G)$.

1) $x y \in E(G)$. Let $H=G-u$, then $\Delta(H)=\Delta(G)-1$, and $H \notin \aleph$. By Theorem 3.7, H has a $(\Delta+1)$-incidence coloring $f^{*}: I(H) \rightarrow C$ such that the far incidence of every color wi with the same color. Now we extend f^{*} to a $(\Delta+1)$-incidence coloring f of G as follows: $f(u, u y)=f^{*}(x, x y), f(u, u x)=f^{*}(y, y x), f(y, y u)=\alpha \in$ $C \backslash\left\{f^{*}[y]\right\}, f(x, x u)=\beta \in C \backslash f^{*}[x]$.
2) $x y \notin E(G)$. Let $H=G-u$, then $\Delta(H)=\Delta(G)-1$. By Theorem 3.7, H has a $(\Delta+1)$-incidence coloring $f^{*}: I(H) \rightarrow C$ such that the far incidence of every vertex is colored with the same color. Now we extend f^{*} to a $(\Delta+1)$-incidence coloring f of G as follows: $f(u, u y)=f^{*}(v, v y), f(y, y u)=\alpha \in C \backslash f^{*}[y]$. If $\alpha \notin f^{*}[x), f(x, x u)=\alpha$, $f(u, u x)=\beta \in C \backslash f^{*}[x) \backslash f(u y)$. If $\alpha \in f^{*}[x), f(x, x u)=\beta \in C\left\{\backslash f^{*}[x] \cup f^{*}(y]\right\}$, $f(u, u x)=\gamma \in C \backslash\left\{f^{*}[x) \cup f(u, u y) \cup \beta\right\}$. If $\alpha \in f^{*}(x]$, when $d(x)<\Delta-1, f(x, x u)=$ $\beta \in C \backslash\left\{f^{*}[x] \cup f^{*}(y]\right\}, f(u, u x)=r \in C \backslash\left\{f^{*}[x] \cup f^{*}(y] \cup \beta\right\}$. When $d(x)=\Delta+1$, by Lemma 2.7 and Lemma 2.8, G has one only one 3-vertex and other vertices are 2-vertices. Let $f(x]=\beta \in C \backslash\left\{f^{*}[x] \cup f^{*}(y]\right\}, f(x, x u)=\alpha=f(y, y u)$, if the near incidence of adjacent vertices of x is colored β in coloring f^{*}, since there is at most 4 limitations, we may recolor it.

The incidence coloring of other elements is same to f^{*}.
Case4 $G \cong \overline{S_{p}}$. By Lemma 2.4, the conclusion is correct.

Acknowledgement

This work is supported partially by national science foundation of China (10571109 and 60603090).

References

[1] R. Brualdi and J. J.Q. Massey.Incidence and strong edge coloring of Graph.Discrete Mathematics, 122(1993),51-58.
[2] R.J.Faudree,R.H.Schelp, A.Gyarfas and Z.Tuza. The strong chromatic index of graphs. Ars Combin, 29B(1990),205-211.
[3] B.Guiduli. On incidence coloring and star arboricity of graphs. Discrete Mathematics, 163(1997),275-278.
[4] W.F.Wang. Edge-Face Chromatic of 1-Tree. Chinese Quarterly Journal of Mathematics, 14(4)(1999)76-83.
[5] D.L.Chen, X.K.Liu and S.D.Wang. The Incidence Chromatic Number and The Incidence Coloring Conjecture of Graphs. Mathematics Economics, 15(3)(1998),47-51.
[6] X.G.Chen, D.L.Chen and S.D.Wang. On Incidence Chromatic number of $P_{N} \times$ K_{M} and $K(n, m)$.Mathematics Economics,17(3)(2000),45-50.
[7] S.D.Wang, D.L.Chen and S.C. Pang. The incidence coloring number of Halin graphs and outerplanar graphs.Discrete Math.256(2002)397-405.
[8] W.C.Shiu, P. C.B.Lam and D.L.Chen. On incidence coloring for some cubic graphs.Discrete Math. 252 (2002) 259-266
[9] J.A.Bondy and Murty. Graph Theory with Application. Macmillan Press.LTD, 1976.

[^0]: *Email: hduan@sdust.edu.cn

