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1 Introduction
The incidence coloring of graph is introduced by Brualdi and Massey[1] for solv-

ing Erdǒs’ strong edge coloring’s Conjecture in 1993.
Let G = (V,E) be a graph of order n and of size m. Let I = {(v,e) : v ∈ V,e ∈

E,v is incident with e} be the set of incidences of G. We say that two incidences
(v,e) and (w, f ) are neighborly iff one of the following conditions satisfies:

(1) v = w; (2) e = f ; (3) the edge {v,w} equals e or f .
We define an incidence coloring of G to be a coloring of its incidences in which

neighborly incidences are assigned different colors. The incidence chromatic number
of G denoted by χi(G) is the smallest number of colors in an incidence coloring.

The incidence chromatic number and the strong chromatic number of graphs
have close relations. A strong edge coloring[2] of G is a coloring of the edges of G in
which the edges with the same colors form an induced matching. The strong chro-
matic number sq(G) equals the smallest number of colors in a strong edge coloring.
Let H be the bipartite multigraph of order n + m with bipartition V,E in which vi is
adjacent to e j iff vi is incident with e j in G. An incidence coloring of G corresponds
to a partition of the edges of H into induced matchings. Thus χi(G) = sq(H).

Therefore, the determination of the incidence chromatic number of a graph is
a fascinating question. The incidence coloring number of complete graphs, com-
plete bipartite graphs and trees are determined in [1]. Putting forward the following
Conjecture:
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Conjecture: Every graph can be incident colored with ∆ + 2 colors, namely
χi(G)≤ ∆+2 where ∆ is the maximum degree of G.

In [3], it is proved that the above conjecture is not true using Paley graphs. [3]
presented that the upper bound for the incidence chromatic number of a graph is
∆ + O(log∆). [5] determined the incidence coloring number of paths, cycles, fans,
wheels, adding-edge wheels and complete multipartite graphs. [6] determined the in-
cidence coloring number of Pn×Pm and generalized complete graphs. [7] determined
the incidence chromatic number of Halin graphs and outerplane graphs(∆ ≥ 4). [8]
determined the incidence chromatic number of cubic graphs.

Let G be a plane graph. If ∃v ∈ V (G) such that G− v is a forest, G is called
1-tree, and v is called a root vertex. A vertex with degree k in a graph G is called
a k-vertex. For a incidence coloring f of G, v ∈ V (G), N(v) = {u|uv ∈ E(G),u ∈
V (G)}. We call f [v) = { f (v,vu),u ∈ N(v)} is the near incidence set of v, and f (v] =
{ f (u,uv),u∈N(v)} is the far incidence set of v. Let f (vu) denote { f (v,vu), f (u,uv)},
and f [v] denote { f (vu)|u ∈ NG(v)}.

In addition, other terms and notations not stated can be found in [9].

2 Structural properties of 1-trees

Lemma 2.1[4] If F is a forest, then |V1(F)| ≥ ∆(F), where V1(F) denotes all
1-vertices of F .

Lemma 2.2[4] If T is tree with ∆(T ) ≥ 2, then |S(T )| ≥ 1 and |S(T )| = 1 iff
T ∼= K1,p−1, where (S(T ) = ∪0≤i≤1Vi(T −V1(T ))).

Lemma 2.3[4] If G is a 2-connected 1-tree, then δ (G)≤ 2.
In this paper, we discuss 2-connected 1-trees G. Hence, δ (G) = 2 and G is cycle

when ∆(G) = 2. The incidence chromatic number of cycles has been determined.
Therefore, we discuss ∆(G)≥ 3 in the following.

In the following discussions, we denote a plane graph Sp with p vertices u,v,x1,
. . . ,xp−2 and 2p− 4 edges ux1,ux2, . . . ,uxp−2,vx1, . . . ,vxp−2. Sp has the same vertex
set with Sp, and E(Sp) = E(Sp)∪{uv}.

For p ≥ 6, S1
p,S

2
p, . . . ,S

k
p(k = p− 5), are a family of plane graphs with the

same vertex set with Sp. E(S1
p) = E(Sp)\{ux1,vx2}∪{x1x2},E(S2

p) = E(S1
p)\{vx3}∪

{x1x3}, E(S3
p) = E(S2

p)\{vx4}∪ {x1x4}, . . .. We denote the family of graphs by ℵ.
The maximum degree of every graph of ℵ is p−3.

Lemma 2.4[4] If G is a 2-connected 1-tree with ∆(G) ≥ 3, then at least one of
the following cases is true:

1) There are two adjacent 2-vertices u and v;
2) There is a 3-face uvw such that d(u) = 2 and d(v) = 3;
3) There is a 4-cycle uxvyu whose interior contains at most one edge xy and

d(u) = d(v) = 2, d(x)≤ ∆(G)−1;
4) G∼= Sp or G∼= Sp.
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Lemma 2.5 Let G be a 2-connected 1-tree and t be the root vertex of G, then
dG(t) = ∆(G).

Proof: Let F = G− t. Since G is 2-connected 1-tree, δ (G) = 2 and V1(F) ⊆
NG(t). If G is cycle, the conclusion is true. When G is not cycle, suppose dG(t) <
∆(G), then there exists v ∈ V (F), dG(v) = ∆(G). If vt /∈ E(G), then dG(v) = dF(v).
By Lemma 2.1, ∆(G) = ∆(F)≤ |V1(F)| ≤ |dG(t)|< ∆(G). The contradiction occurs.
If vt ∈ E(G), by Lemma 2.1, ∆(G)−1 ≤ ∆(F)≤ |V1(F)| ≤ |dG(t)|−1 < ∆(G)−1.
There is also contradiction. Therefore, dG(t) = ∆(G).

Lemma 2.6 Let G be a 2-connected 1-tree and t be the root vertex. For any
x,y ∈V (G)\{t}, dG(x)+dG(y)≤ ∆+2.

Proof: Let G be a 2-connected 1-tree, F = G− t, and F be a tree and V1(F) ⊆
NG(t). ∀x,y ∈V (F), dF(x)−1+dF(y)−1≤ |V1(F)| ≤ ∆(G).

1) If xt,yt /∈ E(G), then dG(x)+dG(y)≤ ∆+2.
2) If one of xt ∈ E(G) and yt ∈ E(G) is correct, without loss of generality, we

assume xt ∈ E(G). If x is a leaf of F , dG(x) = 2, dF(y) = dG(y) ≤ |V1(F)| ≤ ∆(G),
hence dG(x)+ dG(y) ≤ ∆ + 2. If x isn’t a leaf of F , (dG(x)− 1)− 1 + dG(y)− 1 ≤
|V1(F)| ≤ ∆(G)−1, dG(x)+dG(y)≤ ∆+2

3) If xt,yt ∈ E(G), x and y are leaves of F . The conclusion is true. When x and
y are not leaves of F , (dG(x)− 1)− 1 +(dG(y)− 1)− 1 ≤ |V1(F)| ≤ ∆(G)− 2, and
dG(x)+ dG(y) ≤ ∆ + 2. When one of x and y is a leaf of F , the proof similar to the
case 2).

Therefore, The conclusion is true.
Lemma 2.7 Let G be a 2-connected 1-tree and t be a root vertex. If ∃x,y ∈

V (G)\{t} such that dG(x)+dG(y) = ∆+2, then ∀z ∈V (G)\{x,y, t}, dG(z) = 2.
Proof(disproof): Let F = G− t. ∀z ∈ V (G)\{x,y, t}. Suppose that dG(z) ≥ 3.

Since G is 2-connected, F is a tree and |V1(F)| ≤ ∆(G).
Case 1 zt ∈ E(G), then |V1(F)| ≤ ∆(G)−1. For ∀x,y ∈V (G)\{t}, dF(x)−1+

dF(y)−1≤ |V1(F)|.
Subcase 1.1 xt,yt /∈ E(G), then dG(x) = dF(x) and dG(y) = dF(y). Therefore,

dG(x)−1+dG(y)−1≤ |V1(F)|, that is dG(x)+dG(y)≤ ∆+1. There is contradiction
with the proposition.

Subcase 1.2 One of xt ∈ E(G) and yt ∈ E(G) is true, without loss of generality,
we assume xt /∈ E(G) and yt ∈ E(G). Thus, dG(x) = dF(x), dG(y) = dF(y)+ 1, and
dG(x)−1+(dG(y)−1)−1≤ |V1(F)|. If y is a leaf of F , then dG(x)+dG(y)≤ ∆+1.
If y isn’t a leaf of F , then |V1(F)| ≤ ∆− 2, and dG(x) + dG(y) ≤ ∆ + 1. There is
contradiction with the proposition.

Subcase 1.3 xt,yt ∈ E(G), there are three cases as the following:
1) x is a leaf and y isn’t a leaf, then dG(y) = dF(y)+1≤ |V1(F)|+1≤ (∆−2)+

1 = ∆−1, and dG(x)+dG(y)≤ ∆+1.
2) x and y are all leaves, then dG(x)+dG(y) = 4.
3) x and y are all not leaves, then (dG(x)−1)−1+(dG(y)−1)−1≤ |V1(F)| ≤

∆−2. That is dG(x)+dG(y)≤ ∆+1. There is contradiction with the proposition.
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Case 2 zt /∈ E(G), then ∀x,y ∈ V (G)\{t}, dF(x)−1 + dF(y)−1 + dF(z)−1 ≤
|V1(F)| ≤ ∆(G). There are also three subcases, and the proof is similar to Case1.

Lemma 2.8 If G is a 2-connected 1- tree and G is not cycle, then the number of
the maximum degree vertex of G is at most 2. When there are two maximum degree
vertices, other vertices are 2-degree vertices.

Proof: Suppose that there are three maximum degree vertices x,y,z. Let x be
the root vertex. By Lemma 2.6, dG(y)+ dG(z) ≤ ∆ + 2, namely ∆ ≤ 2. Since G is
2-connected, δ (G) = 2. It is contradict with that G isn’t cycle. Hence, the number of
the maximum degree vertex of G is at most 2.

Let x and y be two maximum degree vertices of G, and x be a root vertex.
∀z ∈ V (G)\{x,y}, by Lemma 2.6, dG(y)+ dG(z) ≤ ∆ + 2, d(z) ≤ 2, and δ (G) = 2.
Therefore, d(z) = 2. The conclusion is true.

3 Incidence chromatic number of 2-connected 1-trees

Lemma 3.1[1,5] For any graphs G with the maximum degree ∆, χi(G)≥ ∆+1.
Lemma 3.2[7] Let the maximum degree of G be ∆ and there exist a (∆ + 1)-

incidence coloring. The far incidence of the maximum degree vertex is colored the
same color.

For Sp,Sp and the graphs of ℵ, there are the following three Lemmas.
Lemma 3.3 For p≥ 5, inc(Sp) = ∆(Sp)+2 = p and inc(Sp) = ∆(Sp)+1 = p.
Proof: Firstly, we construct a p-incidence coloring f of Sp, and f : I(Sp)→C =

{1,2, . . . , p}.
f (u,uxi) = f (v,vxi) = i, i = 1,2, . . . , p−2,
f (xi,xiu) = p−1, f (xi,xiv) = p, i = 1,2, . . . , p−2

Hence, χi(Sp)≤ p. Now we prove χi(Sp)≥ p
If Sp isn’t satisfied, there is χi(Sp)≤ p−1 = ∆(Sp)+1. u and v are the maximum

degree vertices. If f is a (∆(Sp)+1)-incidence coloring of Sp, then the near incidence
of u and v need ∆(Sp) colors. The other two colors far incidence coloring of u and v
is needed at least one color same to f [u)∪ f [v). This is contradict with the definition
of incidence coloring. Hence, χi(Sp)≥ p, and χi(Sp) = p.

For Sp, we may get by the incidence coloring of Sp. If the colors of the far
incidence of u and v color the same color, we get a p-incidence coloring of Sp. Hence
inc(Sp) = p.

Lemma 3.4 For p≥ 6, the incidence coloring number of graphs of graph family
ℵ is p−2.

Proof: By Lemma 3.1, if only we give a (p−2)-incidence coloring of ℵ. Now
we construct an incidence coloring f of Sk

P, f :I(Sk
p)→C = {1,2, . . . , p−2}. Let the

vertex set be {u,v,x1, . . . ,xp−2}.
f (u,uxi) = i, f (xi,xiu) = f (x,xx1) = 1, i = 2, . . . , p−2.
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f (v,vxi) = f (u,uxi), f (x1,x1v) = f (xi,xiv) = 2, i = 2 + k, . . . , p− 2, 1 ≤ k ≤
p−5.

f (x1,x1x2) = f (u,uxp−2) = p−2, f (x1,x1xi) = · · ·= f (u,uxi), i = 3, . . . ,1+ k.
f (xi,xix1) = f (u,ux2+k), i = 2, . . . ,1+ k.
Hence, the conclusion is true.
Theorem 3.5 If G is a 2-connected 1-tree with the maximum degree ∆≥ 3 and

two maximum degree vertices, and G 6= S1
p, then there exists a (∆ + 2)-incidence

coloring of G, such that the far incidence of every vertex has the same color.
Proof: If G is Sp or Sp, the conclusion is true by Lemma 3.3. For other graphs,

suppose u and v are two maximum degree vertices. Other vertices of G are 2-vertices
by Lemma 2.6. There exists ∆ uv-paths with different length. We construct a (∆+2)-
incidence coloring f of G, f : I(G)→C = {1,2, . . . ,∆+2}.

Let
r
∑
i=1

ki = ∆, where ki denotes the number of the uv-paths whose length is i and

k1 = 1. We color every path in increasing order. Let f (u] = ∆ +1 and f (v] = ∆ +2.
Thus, the far incidences of u and v are colored.

1) For i = 2, we color the near incidences of u and v with the same color and the
color is 1,2, . . . ,k2, respectively.

2) For i = 3, let uui
1ui

2v(i = 1,2, . . . ,k3) be k3 uv-paths, and let f (u,uui
1) =

f (ui
2,u

i
2ui

1) = k2 + i, f (v,vui
2) = f (ui

1,u
i
1ui

2) = ∆− i, and i = 1,2, . . . ,k3.
3) For i = 4, let uui

1ui
2ui

3v(i = 1,2, . . . ,k4) be k4 uv-paths, and f (u,uui
1) =

f (ui
2,u

i
2ui

1) = k2 + k3 + i, f (v,vui
3) = f (ui

2,u
i
2ui

3) = ∆− k3 − i, and f (ui
1,u

i
1ui

2) =
f (ui

3,u
i
3ui

2) = α ∈C\{ f (uui
1), f (vvi

3)}, i = 1,2, . . . ,k4.
4) For i = r, let uui

1ui
2 . . .ui

r−1v(i = 1,2, . . . ,kr) are kr uv-paths, and f (u,uui
1)

= f (ui
2,u

i
2ui

1) = k2 + · · · + kr−1 + i, f (v,vui
r−1) = f (ui

r−2,u
i
r−2ui

r−1) = ∆−
(k3 + · · ·kr−1)− 1, i = 1,2, . . . ,kr. For any ui

j( j = 2,3, . . . ,r− 2), it’s the far inci-
dences with at most 4 limits, so there exists colors and | f (ui

j]|= 1.
Therefore, we prove the conclusion.
Theorem 3.6 For p ≥ 7, the graphs of graph family ℵ do not have (p− 1)-

incidence colors, therefore the far incidence of every vertex is colored the same color.
Proof: ∀Sk

p ∈ℵ, k is positive integer and k ≤ p−5. Suppose V (Sk
p) = {u,v,x1,

. . . ,xp−2} and u is the root vertex. We need p− 2 colors to color the far incidences
and the near incidences of u. By the definition of incidence coloring and the demand,
the far incidences of v and x1 need the other two different colors.

So, the conclusion is true.
Theorem 3.7 If G is a 2-connected 1-tree with ∆ ≥ 3 and only one maximum

degree vertex, and G /∈ ℵ, there exists a (∆ + 2)-incidence coloring of G, such that
the far incidence of every vertex is colored with the same color.

Proof: We will proceed by induction on the order p of G. There is p ≥ 4 by
the proposition ∆ ≥ 3. When p = 4, it is clear that G is fan F4, so the result is true.
We suppose that the conclusion is correct for graph G with order less than p(p≥ 5).
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Now, for any graph G with order p, by Lemma 2.4, we can divide the proof into four
cases. Let C = {1,2, . . . ,∆+2} be the color set.

Case 1 There are two adjacent 2-vertices u and v. Let N(u) = {x,v}, N(v) =
{u,y}, H = G− u + xv, and dG(y) < ∆ (by proposition only one maximum de-
gree vertex). The order of H is less than p and ∆(H) = ∆(G) = ∆. By induc-
tion hypothesis, H has a (∆ + 2)-incidence coloring f ∗ : I(H) → C such that the
far incidence of every vertex is colored the same color. Now we extend f ∗ to a
(∆ + 2)-incidence coloring f of G as follows: f (xu) = f ∗(xv), f (v,vu) = f ∗(x,xv),
f (u,uv) = f (y,yv) = α ∈ C\{ f ∗[y]∪ f ∗(x])}. The incidence coloring of other ele-
ments is same to f ∗.

Case 2 There is a 3-face uvwu such that dG(u) = 2 and dG(v) = 3. By Lemma
2.5 and Lemma 2.8, dG(w) = ∆(G). Let H = G−u, and ∆(H) = ∆(G)−1. If H /∈ℵ,
by induction hypothesis, H has a (∆+2)-incidence coloring f ∗ : I(H)→C such that
the far incidence of every vertex is colored with the same color. Now we extend f ∗

to a (∆ + 2)-incidence coloring f of G as follows: f (u,uw) = f ∗(v,vw), f (u,uv) =
f ∗(w,wv), f (w,wu) = f (v,vu) = α ∈C\{ f ∗[w)∪ f ∗[v)}. The incidence coloring of
other elements the same to f ∗.

If H ∈ℵ, we construct a (∆+2)-incidence coloring of G. Let V (G) = {w,u,v,x,
y,v1, . . . , v∆−2} and E(G)= {wu,wv,wv1, . . . ,wv∆−2}∪{uv,vx,xy}∪{xv1, . . . ,xvk−1}∪
{yvk, . . . ,y v∆−2}, 1 ≤ k ≤ ∆−2, f (w,wu) = f (v,vu) = 1, f (v] = 2, and f (w,wvi) =
2+ i, i = 1, . . . ,∆−2,

f (w] = ∆+1, f (x] = ∆+2, f (y] = 1,
f (x,xvi) = f (w,wvi)i = 1, . . . ,k−1, f (y,yvi) = f (w,wvi)i = k, . . . ,∆−2.
Clearly, f is an incidence coloring of G which satisfies the demand.
Case 3 There is a 4-cycle uxvyu whose interior contains at most one edge xy,

dG(u) = dG(v) = 2, dG(x)≤ ∆(G)−1.
1) xy ∈ E(G). Let H = G− u, ∆(H) = ∆(G)− 1, H has a (∆ + 1)-incidence

coloring f ∗ : I(H)→C′ = {1,2, . . . ,∆+1} such that the far incidence of every vertex
is color with the same color. Now we extend f ∗ to a (∆+2)-incidence coloring f of
G as follows: f (u,ux) = f ∗(y,yx), f (u,uy) = f ∗(x,xy), f (x,xu) = f (y,yu) = ∆ + 2.
The incidence coloring of other elements is same to f ∗.

2) xy /∈ E(G). Let H = G− u, ∆(H) = ∆(G)− 1, H has a (∆ + 1)-incidence
coloring f ∗ : I(H)→C′ = {1,2, . . . ,∆+1} such that the far incidence of every vertex
is colored with the same color. Now we extend f ∗ to a (∆+2)-incidence coloring f
of G as follows: f (u,uy) = f ∗(v,vy), f (u,ux) = f ∗(v,vx), f (y,yu) = f (x,xu) = ∆+2.
The incidence coloring of other elements is same to f ∗.

Case 4 G∼= Sp or G∼= Sp. By Lemma3.3, the conclusion is true.
Theorem 3.8 Let G be a 2-connected 1-tree with ∆≥ 3 and G 6= Sp and G /∈ℵ,

χi(G) = ∆+1.
Proof: We will proceed by induction on the order p of G. There is p ≥ 4 by

the proposition ∆ ≥ 3. When p = 4, clearly, G is fan F4, so the result is true. We
suppose that the conclusion holds for graph G of order less than p(p≥ 5). Now, for
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any graph G of order p, by Lemma 2.3, we may divide the proof into four cases. Let
C = {1,2, . . . ,∆+1} be the color set.

Case 1 There are two adjacent 2-vertices u and v. Let N(u) = {x,v}, N(v) =
{u,y}, and H = G− u + xv. The order of H is less than p and ∆(H) = ∆(G) = ∆.
By induction hypothesis, H has a (∆ + 1)-incidence coloring f ∗ : I(H) → C. Now
we extend f ∗ to a (∆ + 1)-incidence coloring f of G as follows: f (xu) = f ∗(xv),
f (v,vu) = α ∈C\{ f ∗(vy)∪ f (u,ux)}, f (u,uv) = β ∈C\{ f (xu)∪ f ∗(v,vy)∪α}. The
incidence coloring of other elements is same to f ∗.

Case 2 There is a 3-face such that dG(u) = 2 and dG(v) = 3. By Lemma 2.4
and Lemma 2.7, w is a root vertex and dG(w) = ∆(G). Let H = G−u, then ∆(H) =
∆(G)−1. If H /∈ℵ, by Theorem 3.6 and 3.7, H has a (∆+1)-incidence coloring f ∗ :
I(H)→C such that the far incidence of every vertex is colored with the same color.
Next, we extend f ∗ to a (∆ + 1)-incidence coloring f of G as follows: f (u,uw) =
f ∗(v,vw), f (u,uv) = f ∗(w,wv), f (v,vu) = α ∈ C\ f ∗[v], f (w,wu) = β ∈ C\ f ∗[w].
The incidence coloring of other elements is same to f ∗.

If H ∈ ℵ, by Lemma 3.4, H has a (∆)-incidence coloring f ∗ : I(H) → C′ =
{1,2, . . . ,∆}. Now we extend f ∗ to a (∆ + 1)-incidence coloring f of G as follows:
f (u,uw) = f ∗(v,vw), f (w,wu) = f (v,vu) = ∆ + 1, , f (u,uv) = f ∗(w,wv). The inci-
dence coloring of other elements is same to f ∗.

Case 3 There is a 4-cycle uxvyu whose interior contains at most one edge xy,
dG(u) = dG(v) = 2, dG(x)≤ ∆(G)−1, then dG(y) = ∆(G).

1) xy ∈ E(G). Let H = G−u, then ∆(H) = ∆(G)−1, and H /∈ℵ. By Theorem
3.7, H has a (∆ + 1)-incidence coloring f ∗ : I(H) → C such that the far incidence
of every color wi with the same color. Now we extend f ∗ to a (∆ + 1)-incidence
coloring f of G as follows: f (u,uy) = f ∗(x,xy), f (u,ux) = f ∗(y,yx), f (y,yu) = α ∈
C\{ f ∗[y]}, f (x,xu) = β ∈C\ f ∗[x].

2) xy /∈ E(G). Let H = G−u, then ∆(H) = ∆(G)−1. By Theorem 3.7, H has a
(∆+1)-incidence coloring f ∗ : I(H)→C such that the far incidence of every vertex is
colored with the same color. Now we extend f ∗ to a (∆+1)-incidence coloring f of G
as follows: f (u,uy) = f ∗(v,vy), f (y,yu) = α ∈C\ f ∗[y]. If α /∈ f ∗[x), f (x,xu) = α ,
f (u,ux) = β ∈ C \ f ∗[x) \ f (uy). If α ∈ f ∗[x), f (x,xu) = β ∈ C{\ f ∗[x]∪ f ∗(y]},
f (u,ux) = γ ∈C\{ f ∗[x)∪ f (u,uy)∪β}. If α ∈ f ∗(x], when d(x) < ∆−1, f (x,xu) =
β ∈C \ { f ∗[x]∪ f ∗(y]}, f (u,ux) = r ∈C \ { f ∗[x]∪ f ∗(y]∪β}. When d(x) = ∆ + 1,
by Lemma 2.7 and Lemma 2.8, G has one only one 3-vertex and other vertices are
2-vertices. Let f (x] = β ∈ C\{ f ∗[x]∪ f ∗(y]}, f (x,xu) = α = f (y,yu), if the near
incidence of adjacent vertices of x is colored β in coloring f ∗, since there is at most
4 limitations, we may recolor it.

The incidence coloring of other elements is same to f ∗.
Case4 G∼= Sp. By Lemma 2.4, the conclusion is correct.
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